Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 6384-6396, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38574272

RESUMEN

Peptide deformylase (PDF) is involved in bacterial protein maturation processes. Originating from the interest in a new antibiotic, tremendous effort was put into the refinement of PDF inhibitors (PDFIs) and their selectivity. We obtained a full NMR backbone assignment the emergent additional protein backbone resonances of ecPDF 1-147 in complex with 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (2), a potential new structural scaffold for more selective PDFIs. We also determined the complex crystal structures of E. coli PDF (ecPDF fl) and 2. Our structure suggests an alternative ligand conformation within the protein, a possible starting point for further selectivity optimization. The orientation of the second ligand conformation in the crystal structure points toward a small region of the S1' pocket, which differs between bacterial PDFs and human PDF. Moreover, we analyzed the binding mode of 2 via NMR TITAN line shape analysis, revealing an induced fit mechanism.


Asunto(s)
Amidohidrolasas , Antibacterianos , Escherichia coli , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/enzimología , Escherichia coli/efectos de los fármacos , Cristalografía por Rayos X , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Humanos , Relación Estructura-Actividad
2.
ChemMedChem ; 19(6): e202300538, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38057137

RESUMEN

The lack of new antibiotics and the rapidly rising number of pathogens resistant to antibiotics pose a serious problem to mankind. In bacteria, the cell membrane provides the first line of defence to antibiotics by preventing them from reaching their molecular target. To overcome this entrance barrier, it has been suggested[1] that small Gold-Nanoparticles (AuNP) could possibly function as drug delivery systems for antibiotic ligands. Using actinonin-based ligands, we provide here proof-of-principle of AuNP functionalisation, the capability to bind and inhibit the target protein of the ligand, and the possibility to selectively release the antimicrobial payload. To this end, we successfully synthesised AuNP coated with thio-functionalised actinonin and a derivative. Interactions between 15N-enriched His-peptide deformylase 1-147 from E. coli (His-ecPDF 1-147) and compound-coated AuNP were investigated via 2D 1H-15N-HSQC NMR spectra proving the direct binding to His-ecPDF 1-147. More importantly by adding dithiothreitol (DTT), we show that the derivative is successfully released from AuNPs while still bound to His-ecPDF 1-147. Our findings indicate that AuNP-conjugated ligands can address and bind intracellular target proteins. The system introduced here presents a new delivery platform for antibiotics and allows for the easy optimisation of ligand coated AuNPs.


Asunto(s)
Amidohidrolasas , Oro , Nanopartículas del Metal , Oro/química , Escherichia coli , Ligandos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Ácidos Hidroxámicos
3.
J Phys Chem B ; 127(30): 6668-6674, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37490415

RESUMEN

Electron paramagnetic resonance spectroscopy (EPR) is mostly used in structural biology in conjunction with pulsed dipolar spectroscopy (PDS) methods to monitor interspin distances in biomacromolecules at cryogenic temperatures both in vitro and in cells. In this context, spectroscopically orthogonal spin labels were shown to increase the information content that can be gained per sample. Here, we exploit the characteristic properties of gadolinium and nitroxide spin labels at physiological temperatures to study side chain dynamics via continuous wave (cw) EPR at X band, surface water dynamics via Overhauser dynamic nuclear polarization at X band and short-range distances via cw EPR at high fields. The presented approaches further increase the accessible information content on biomolecules tagged with orthogonal labels providing insights into molecular interactions and dynamic equilibria that are only revealed under physiological conditions.


Asunto(s)
Biología , Marcadores de Spin , Temperatura , Espectroscopía de Resonancia por Spin del Electrón/métodos
4.
Nat Commun ; 14(1): 2273, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080980

RESUMEN

Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.


Asunto(s)
Colágeno , Dominios Homologos src , Transporte de Proteínas , Colágeno/metabolismo , Procolágeno/metabolismo , Aparato de Golgi/metabolismo
5.
ChemMedChem ; 18(11): e202200631, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883965

RESUMEN

Due to worldwide increasing resistances, there is a considerable need for antibacterial compounds with modes of action not yet realized in commercial antibiotics. One such promising structure is the acetyl-CoA carboxylase (ACC) inhibitor moiramide B which shows strong antibacterial activity against gram-positive bacteria such as Bacillus subtilis and weaker activities against gram-negative bacteria. However, the narrow structure-activity relationship of the pseudopeptide unit of moiramide B represents a formidable challenge for any optimization strategy. In contrast, the lipophilic fatty acid tail is considered an unspecific vehicle responsible only for the transport of moiramide into the bacterial cell. Here we show that the sorbic acid unit, in fact, is highly relevant for ACC inhibition. A hitherto undescribed sub-pocket at the end of the sorbic acid channel binds strongly aromatic rings and allows the development of moiramide derivatives with altered antibacterial profiles including anti-tubercular activity.


Asunto(s)
Antibacterianos , Ácido Sórbico , Antibacterianos/farmacología , Antibacterianos/química , Amidas/farmacología , Succinimidas/farmacología , Pruebas de Sensibilidad Microbiana
6.
Z Naturforsch C J Biosci ; 78(3-4): 91-92, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821642
7.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36809224

RESUMEN

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Asunto(s)
Canal de Potasio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Sitios de Unión , Mutación , Membrana Celular/metabolismo
8.
Z Naturforsch C J Biosci ; 78(3-4): 123-131, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35993925

RESUMEN

The preparation of a novel 4-methylbenzo[h] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[h]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.


Asunto(s)
Antineoplásicos , Compuestos Heterocíclicos con 2 Anillos , Tubulina (Proteína)/metabolismo , Simulación del Acoplamiento Molecular , Polimerizacion , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/farmacología , Estructura Molecular , Antineoplásicos/farmacología , Proliferación Celular
10.
Virus Res ; 320: 198903, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037849

RESUMEN

Ion channels are membrane proteins essential for a plethora of cellular functions including maintaining cell shape, ion homeostasis, cardiac rhythm and action potential in neurons. The complexity and often extensive structure of eukaryotic membrane proteins makes it difficult to understand their basic biological regulation. Therefore, this article suggests, viroporins - the miniature versions of eukaryotic protein homologs from viruses - might serve as model systems to provide insights into behaviour of eukaryotic ion channels in general. The structural requirements for correct assembly of the channel along with the basic functional properties of a K+ channel exist in the minimal design of the viral K+ channels from two viruses, Chlorella virus (Kcv) and Ectocarpus siliculosus virus (Kesv). These small viral proteins readily assemble into tetramers and they sort in cells to distinct target membranes. When these viruses-encoded channels are expressed into the mammalian cells, they utilise their protein machinery and hence can serve as excellent tools to study the cells protein sorting machinery. This combination of small size and robust function makes viral K+ channels a valuable model system for detection of basic structure-function correlations. It is believed that molecular and physiochemical analyses of these viroporins may serve as basis for the development of inhibitors or modulators to ion channel activity for targeting ion channel diseases - so called channelopathies. Therefore, it may provide a potential different scope for molecular pharmacology studies aiming at novel and innovative therapeutics associated with channel related diseases. This article reviews the structural and functional properties of Kcv and Kesv upon expression in mammalian cells and Xenopus oocytes. The mechanisms behind differential protein sorting in Kcv and Kesv are also thoroughly discussed.


Asunto(s)
Chlorella , Phycodnaviridae , Virus , Animales , Chlorella/metabolismo , Eucariontes , Canales Iónicos/metabolismo , Mamíferos/metabolismo , Phycodnaviridae/genética , Phycodnaviridae/metabolismo , Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas Viroporinas , Virus/metabolismo
11.
ChemMedChem ; 17(22): e202200392, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-35979853

RESUMEN

Ras proteins are implicated in some of the most common life-threatening cancers. Despite intense research during the past three decades, progress towards small-molecule inhibitors of mutant Ras proteins still has been limited. Only recently has significant progress been made, in particular with ligands for binding sites located in the switch II and between the switch I and switch II region of K-Ras4B. However, the structural diversity of inhibitors identified for those sites to date is narrow. Herein, we show that hydrazones and oxime ethers of specific bis(het)aryl ketones represent structurally variable chemotypes for new GDP/GTP-exchange inhibitors with significant cellular activity.


Asunto(s)
Éteres , Proteínas ras , Sitios de Unión , Proteínas Fúngicas , Hidrazonas/farmacología
12.
Langmuir ; 38(34): 10351-10361, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35969658

RESUMEN

This work aimed at the development of a stable albumin-perfluorocarbon (o/w) emulsion as an artificial oxygen carrier suitable for clinical application. So far, albumin-perfluorocarbon-(o/w) emulsions have been successfully applied in preclinical trials. Cross-linking a variety of different physical and chemical methods for the characterization of an albumin-perfluorocarbon (PFC)-(o/w) emulsion was necessary to gain a deep understanding of its specific emulsification processes during high-pressure homogenization. High-pressure homogenization is simple but incorporates complex physical reactions, with many factors influencing the formation of PFC droplets and their coating. This work describes and interprets the impact of albumin concentration, homogenization pressure, and repeated microfluidizer passages on PFC-droplet formation; its influence on storage stability; and the overcoming of obstacles in preparing stable nanoemulsions. The applied methods comprise dynamic light scattering, static light scattering, cryo- and non-cryo-scanning and transmission electron microscopies, nuclear magnetic resonance spectroscopy, light microscopy, amperometric oxygen measurements, and biochemical methods. The use of this wide range of methods provided a sufficiently comprehensive picture of this polydisperse emulsion. Optimization of PFC-droplet formation by means of temperature and pressure gradients results in an emulsion with improved storage stability (tested up to 5 months) that possibly qualifies for clinical applications. Adaptations in the manufacturing process strikingly changed the physical properties of the emulsion but did not affect its oxygen capacity.


Asunto(s)
Fluorocarburos , Albúminas , Emulsiones/química , Fluorocarburos/química , Oxígeno , Tamaño de la Partícula
13.
Molecules ; 26(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299515

RESUMEN

A novel series of 2-(aryldiazenyl)-3-methyl-1H-benzo[g]indole derivatives (3a-f) were prepared through the cyclization of the corresponding arylamidrazones, employing polyphosphoric acid (PPA) as a cyclizing agent. All of the compounds (3a-f) were characterized using 1H NMR, 13C NMR, MS, elemental analysis, and melting point techniques. The synthesized compounds were evaluated for cytotoxic activity against diverse human cancer cell lines by the National Cancer Institute. While all of the screened compounds were found to be cytotoxic at a 10 µM concentration, two of them (2c) and (3c) were subjected to five dose screens and showed a significant cytotoxicity and selectivity.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Indoles/síntesis química , Indoles/farmacología , Células A549 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Células HL-60 , Humanos , Células K562 , Células MCF-7 , Células PC-3 , Relación Estructura-Actividad
14.
ChemMedChem ; 16(16): 2504-2514, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33899342

RESUMEN

Oncogenic Ras proteins are implicated in the most common life-threatening cancers. Despite intense research over the past two decades, the progress towards small-molecule inhibitors has been limited. One reason for this failure is that Ras proteins interact with their effectors only via protein-protein interactions, which are notoriously difficult to address with small organic molecules. Herein we describe an alternative strategy, which prevents farnesylation and subsequent membrane insertion, a prerequisite for the activation of Ras proteins. Our approach is based on sequence-selective supramolecular receptors which bind to the C-terminal farnesyl transferase recognition unit of Ras and Rheb proteins and covalently modify the essential cysteine in the so-called CaaX-box.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Humanos , Proteínas de la Membrana/química , Proteínas Quinasas Activadas por Mitógenos/química , Modelos Moleculares , Estructura Molecular , Fosfatidilinositol 3-Quinasas/química , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal
15.
Nat Plants ; 7(4): 524-538, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33846594

RESUMEN

Biogenesis of photosystem II (PSII), nature's water-splitting catalyst, is assisted by auxiliary proteins that form transient complexes with PSII components to facilitate stepwise assembly events. Using cryo-electron microscopy, we solved the structure of such a PSII assembly intermediate from Thermosynechococcus elongatus at 2.94 Å resolution. It contains three assembly factors (Psb27, Psb28 and Psb34) and provides detailed insights into their molecular function. Binding of Psb28 induces large conformational changes at the PSII acceptor side, which distort the binding pocket of the mobile quinone (QB) and replace the bicarbonate ligand of non-haem iron with glutamate, a structural motif found in reaction centres of non-oxygenic photosynthetic bacteria. These results reveal mechanisms that protect PSII from damage during biogenesis until water splitting is activated. Our structure further demonstrates how the PSII active site is prepared for the incorporation of the Mn4CaO5 cluster, which performs the unique water-splitting reaction.


Asunto(s)
Proteínas Bacterianas/genética , Complejo de Proteína del Fotosistema II/genética , Proteínas Bacterianas/ultraestructura , Fotosíntesis , Complejo de Proteína del Fotosistema II/ultraestructura , Thermosynechococcus/genética , Thermosynechococcus/ultraestructura
16.
Structure ; 29(2): 114-124.e3, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32966763

RESUMEN

Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.


Asunto(s)
Proteína 11 Similar a Bcl2/química , Multimerización de Proteína , Animales , Apoptosis , Proteína 11 Similar a Bcl2/metabolismo , Sitios de Unión , Humanos , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Ratas , Proteína bcl-X/química , Proteína bcl-X/metabolismo
17.
Angew Chem Int Ed Engl ; 59(17): 6806-6810, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32045504

RESUMEN

Even though halogen bonding-the noncovalent interaction between electrophilic halogen substituents and Lewis bases-has now been established in molecular recognition and catalysis, its use in enantioselective processes is still very rarely explored. Herein, we present the synthesis of chiral bidentate halogen-bond donors based on two iodoimidazolium units with rigidly attached chiral sidearms. With these Lewis acids, chiral recognition of a racemic diamine is achieved in NMR studies. DFT calculations support a 1:1 interaction of the halogen-bond donor with both enantiomers and indicate that the chiral recognition is based on a different spatial orientation of the Lewis bases in the halogen-bonded complexes. In addition, moderate enantioselectivity is achieved in a Mukaiyama aldol reaction with a preorganized variant of the chiral halogen-bond donor. This represents the first case in which asymmetric induction was realized with a pure halogen-bond donor lacking any additional active functional groups.

18.
Protein Sci ; 28(12): 2064-2072, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31587407

RESUMEN

The nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) transcription factors play a critical role in human immune response. The family includes homodimers and heterodimers of five component proteins, which mediate different transcriptional responses and bind preferentially to different DNA sequences. Crystal structures of DNA complexes show that the dimers of the Rel-homology regions are structurally very similar. Differing DNA sequence preference together with structural similarity suggests that the dimers may differ in their dynamics. In this study, we present the first near-complete 15 N, 13 Cα/ß , and HN backbone resonance assignments of two dimers of the dimerization domain (DD) of the NFκB1 (p50) protein (residues 241-351): the homodimer of two p50 domains and a heterodimer of the p50 DD with the p65 DD. As expected, the two dimers behave very similarly, with chemical shift differences between them largely concentrated in the dimer interface and attributable to specific differences in the amino acid sequences of p50 and p65. A comparison of the picosecond-nanosecond dynamics of the homo- and heterodimers also shows that the environment of p50 is similar, with an overall slightly reduced correlation time for the homodimer compared to the heterodimer, consistent with its slightly smaller molecular weight. These results demonstrate that NMR spectroscopy can be used to explore subtle changes in structure and dynamics that have the potential to give insights into differences in specificity that can be exploited in the design of new therapeutic agents.


Asunto(s)
Subunidad p50 de NF-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Dimerización , Humanos , Modelos Moleculares , Subunidad p50 de NF-kappa B/química , Factor de Transcripción ReIA/química
19.
BMC Mol Cell Biol ; 20(1): 23, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286859

RESUMEN

BACKGROUND: Protein tyrosine phosphatase PTPN13, also known as PTP-BL in mice, is a large multi-domain non-transmembrane scaffolding protein with a molecular mass of 270 kDa. It is involved in the regulation of several cellular processes such as cytokinesis and actin-cytoskeletal rearrangement. The modular structure of PTPN13 consists of an N-terminal KIND domain, a FERM domain, and five PDZ domains, followed by a C-terminal protein tyrosine phosphatase domain. PDZ domains are among the most abundant protein modules and they play a crucial role in signal transduction of protein networks. RESULTS: Here, we have analysed the binding characteristics of the isolated PDZ domains 2 and 3 from PTPN13 and compared them to the tandem domain PDZ2/3, which interacts with 12 C-terminal residues of the tumour suppressor protein of APC, using heteronuclear multidimensional NMR spectroscopy. Furthermore, we could show for the first time that PRK2 is a weak binding partner of PDZ2 and we demonstrate that the presence of PDZ3 alters the binding affinity of PDZ2 for APC, suggesting an allosteric effect and thereby modulating the binding characteristics of PDZ2. A HADDOCK-based molecular model of the PDZ2/3 tandem domain from PTPN13 supports these results. CONCLUSIONS: Our study of tandem PDZ2/3 in complex with APC suggests that the interaction of PDZ3 with PDZ2 induces an allosteric modulation within PDZ2 emanating from the back of the domain to the ligand binding site. Thus, the modified binding preference of PDZ2 for APC could be explained by an allosteric effect and provides further evidence for the pivotal function of PDZ2 in the PDZ123 domain triplet within PTPN13.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/química , Dominios PDZ , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 13/química , Regulación Alostérica , Animales , Sitios de Unión , Ligandos , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Multimerización de Proteína
20.
Nucleic Acids Res ; 47(22): 11906-11920, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31340016

RESUMEN

High Mobility Group Protein A1a (HMGA1a) is a highly abundant nuclear protein, which plays a crucial role during embryogenesis, cell differentiation, and neoplasia. Here, we present the first ever NMR-based structural ensemble of full length HMGA1a. Our results show that the protein is not completely random coil but adopts a compact structure consisting of transient long-range contacts, which is regulated by post-translational phosphorylation. The CK2-, cdc2- and cdc2/CK2-phosphorylated forms of HMGA1a each exhibit a different binding affinity towards the PRD2 element of the NFκB promoter. Our study identifies connected regions between phosphorylation sites in the wildtype ensemble that change considerably upon phosphorylation, indicating that these posttranslational modifications sites are part of an electrostatic contact network that alters the structural ensemble by shifting the conformational equilibrium. Moreover, ITC data reveal that the CK2-phosphorylated HMGA1a exhibits a different DNA promoter binding affinity for the PRD2 element. Furthermore, we present the first structural model for AT-hook 1 of HMGA1a that can adopt a transient α-helical structure, which might serve as an additional regulatory mechanism in HMAG1a. Our findings will help to develop new therapeutic strategies against HMGA1a-associated cancers by taking posttranslational modifications into consideration.


Asunto(s)
ADN/metabolismo , Proteína HMGA1a/química , Proteína HMGA1a/metabolismo , Proteínas Intrínsecamente Desordenadas , FN-kappa B/genética , Pliegue de Proteína , Proteína Quinasa CDC2/metabolismo , Quinasa de la Caseína II/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , FN-kappa B/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...